Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions

نویسنده

  • Rommel G. Regis
چکیده

Optimization Involving Expensive Black-Box Objective and Constraint Functions Rommel G. Regis Mathematics Department, Saint Joseph’s University, Philadelphia, PA 19131, USA, [email protected] August 23, 2010 Abstract. This paper presents a new algorithm for derivative-free optimization of expensive black-box objective functions subject to expensive black-box inequality constraints. The proposed algorithm, called ConstrLMSRBF, uses radial basis function (RBF) surrogate models and is an extension of the Local Metric Stochastic RBF (LMSRBF) algorithm by Regis and Shoemaker (2007a) that can handle black-box inequality constraints. Previous algorithms for the optimization of expensive functions using surrogate models have mostly dealt with bound constrained problems where only the objective function is expensive, and so, the surrogate models are used to approximate the objective function only. In contrast, ConstrLMSRBF builds RBF surrogate models for the objective function and also for all the constraint functions in each iteration, and uses these RBF models to guide the selection of the next point where the objective and constraint functions will be evaluated. Computational results indicate that ConstrLMSRBF is better than alternative methods on 9 out of 14 test problems and on the MOPTA08 problem from the automotive industry (Jones 2008). The MOPTA08 problem has 124 decision variables and 68 inequality constraints and is considered a large-scale problem in the area of expensive black-box optimization. The alternative methods include a Mesh Adaptive Direct Search (MADS) algorithm (Abramson and Audet 2006, Audet and Dennis 2006) that uses a kriging-based surrogate model, the Multistart LMSRBF algorithm by Regis and Shoemaker (2007a) modified to handle black-box constraints via a penalty approach, a genetic algorithm, a pattern search algorithm, a sequential quadratic programming algorithm, and COBYLA (Powell 1994), which is a derivative-free trust-region algorithm. Based on the results of this study, the results in Jones (2008) and other approaches presented at the ISMP 2009 conference, ConstrLMSRBF appears to be among the best, if not the best, known algorithm for the MOPTA08 problem in the sense of providing the most improvement from an initial feasible solution within a very limited number of objective and constraint function evaluations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONORBIT: constrained optimization by radial basis function interpolation in trust regions

This paper presents CONORBIT, a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions and is an extension of the ORBIT algorithm (Wild, Regis, and Shoemaker 2008). It...

متن کامل

SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems

This paper introduces a surrogate model based algorithm for computationally expensive mixed-integer black-box global optimization problems that may have computationally expensive constraints. The goal is to find accurate solutions with relatively few function evaluations. A radial basis function surrogate model (response surface) is used to select candidates for integer and continuous decision ...

متن کامل

Parallel radial basis function methods for the global optimization of expensive functions

We introduce a master–worker framework for parallel global optimization of computationally expensive functions using response surface models. In particular, we parallelize two radial basis function (RBF) methods for global optimization, namely, the RBF method by Gutmann [Gutmann, H.M., 2001a. A radial basis function method for global optimization. Journal of Global Optimization 19(3), 201–227] ...

متن کامل

Blackbox: A procedure for parallel optimization of expensive black-box functions

This note provides a description of a procedure that is designed to efficiently optimize expensive black-box functions. It uses the response surface methodology by incorporating radial basis functions as the response model. A simple method based on a Latin hypercube is used for initial sampling. A modified version of CORS algorithm with space rescaling is used for the subsequent sampling. The p...

متن کامل

A New Framework for Combining Global and Local Methods in Black Box Optimization

We propose a new framework for the optimization of computationally expensive black box problems, where neither closed-form expressions nor derivatives of the objective functions are available. The proposed framework consists of two procedures. The first constructs a global metamodel to approximate the underlying black box function and explores an unvisited area to search for a global solution; ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & OR

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011